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A wide class of solutions of the steady Euler equations, representing localized 
rotational disturbances imbedded in a uniform stream U, is inferred by considering 
the process of magnetic relaxation to analogous magnetostatic equilibria. These 
solutions, which may be regarded as generalizations of vortex rings, are characterized 
by their streamline topology, distinct topologies giving rise to  distinct solutions. 

Particular attention is paid to the class of axisymmetric solutions described 
by Stokes stream function +(s, 2 ) .  It is argued that the appropriate topological 
‘invariant ’ characterizing the flow is the function V(+) representing the volume 
inside toroidal surfaces + = const. in the region of closed streamlines where + > 0. 
This function is described as the ‘signature’ of the flow, and i t  is shown that in a 
certain sense, flows with different signatures are topologically distinct. The approach 
yields a method by which flows of arbitrary signature V(+) may in principle be found, 
and the corresponding vorticity up, = SF(+) calculated. 

1. Introduction 
In an earlier paper (Moffatt 1985, hereinafter referred to as M85), the analogy 

between the Euler equations for the steady flow of an inviscid incompressible fluid, 

U A O  = Vh, o = curlu, V-u = 0, (1.1) 

j A  B = Vp,  j = curlB, V * B  = 0, (1 2 )  

and the equations of magnetostatic equilibrium in a perfectly conducting fluid, 

has been exploited, in a manner suggested by Arnol’d (1974), with a view to 
establishing the existence of solutions of both problems of arbitrarily complex 
topology. The essence of the approach lies in the observation that the magnetostatic 
problem (1.2) lends itself to  treatment by a relaxation technique: if an initial field 
B(x, 0) of arbitrary topology does not satisfy the magnetostatic conditions (1.2), i.e. 

(1.3) 
if 

then the fluid will move in response to the rotational body force. If the fluid carrying 
the magnetic field is assumed viscous (but still perfectly conducting) then the energy 
of the system (initially entirely magnetic) will be dissipated by viscosity. During this 
process the lines of force (or ‘B-lines’) are frozen in the fluid, so that all knots and 
linkages of B-lines are conserved. These knots and links in general impede the decay 
of the field, which is forced to seek an equilibrium, satisfying (1 2),  and yet being 

curl (B(x, 0) A curl B(x,  0)) f 0, 
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‘topologically ycessible ’ from the initial field B(x,  0). To each such equilibrium there 
is then a strictly analogous solution of the Euler problem (1.1). 

A characteristic feature of these solutions is that  they may include tangential 
discontinuities of B (i.e. current sheets) or analogously of u (i.e. vortex sheets) 
distributed in some way within the fluid domain. These may form during the 
magnetic-relaxation process due to the approach of two ‘magnetic surfaces ’, the fluid 
between them being squeezed out in a manner that does not involve stretching of 
B-lines and is therefore compatible with the decrease of magnetic energy characteristic 
of the relaxation process. This squeezing process is generally three-dimensional in 
character: we shall find that under particular symmetry conditions (see $4). the 
process cannot occur, and so tangential discontinuities cannot form. This leads to 
some important conclusions concerning the existence of smooth axisymmetric Euler 
flows. 

I n  M85, we supposed that the fluid was contained in a bounded domain 9, with 
boundary condition Ban = 0 (or u*n = 0) on a9. I n  the present paper, we shall 
suppose that the fluid fills all space, and that the initial magnetic field in the magnetic 
relaxation problem has the form 

B(x,  0 )  = B, + b,(x) ,  (1.4) 

r31b,(x)l < co for allx,  (1.5) 

where Bo is uniform (the ‘field at infinity’) and b,(x) is a smooth solenoidal field, 
localized in the sense that 

where r = 1x1. An arbitrary ‘blob’ of current j , ( x )  confined to  a finite region would, 
for example, produce a field b,(x) satisfying the condition (1.5). We shall consider 
the relaxation of the field (1.4) towards a magnetostatic equilibrium 

B E @ )  = B , + b E ( X ) ,  (1.6) 

where bE(x), as will become apparent, satisfies the same condition (1.5). The 
analogous Euler flows then have the form 

P ( x )  = U,+uE(x) (1 .7)  

and this structure includes all vortex rings of known type (see, for example, Fraenkel 
1970, 1972; Norbury 1973). The procedure, when restricted to axisymmetric relaxa- 
tion, indicates the existence of a very wide class of vortex rings, which can be 
characterized by a function V($)  representing the volume of fluid contained inside 
a toroidal stream surface $ = const. We shall describe the function V($)  as the 
‘signature’ of the vortex. The signature V($)  has topological significance, in that 
two axisymmetric flows of ‘ vortex-ring structure ’ characterized by Stokes stream 
functions and $2 are topologically equivalent only if they have the same 
signature; and we shall show in effect that  for every monotonic decreasing signature 
V($)  (0 < $ < $ N )  with V(0)  = V,, V ( $ N )  = 0, there exists a corresponding steady 
vortex-ring structure. An analogous result may be obtained for two-dimensional 
flows. 

2. Some general features of the magnetic-relaxation problem 
If the ‘perturbation field’ b,(x) in (1.4) is weak relative to B,, then the field lines 

of B(x,  0) will be weakly perturbed from those of B,, as indicated in figures 1 (a ,  b) .  
If b,(x) is produced by a localized displacement field q ( x )  acting on B,, i.e. if 

(2.1) 
a 
aZ b,(x) = ( B ; V ) q  = B,-q 
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(4 (4 

FIGURE 1. Possible topologies for the initial field Bo+bo(x).  The disturbance is localized within the 
dashed circle. (a )  Fields obtainable from localized displacement; (6) fields not obtainable from 
localized displacement; (c) field with region of trapped field lines; ( d )  field of complex (knotted) 
topology. 

there is no net 'shift' of a line of force as it passes through the disturbance region 
(figure l a ) .  However, a general localized field b, (x)  will involve a net shift 6(x, y) 
given, to lowest order, by 

as indicated in figure 1 (b ) .  
I f  Ib,(x)l is locally of the same order as IB,I or greater, then some field lines of 

B(x, 0) may be 'trapped ' in the perturbed region, as indicated in figure 1 ( c )  ; we shall 
denote by go the domain within which field lines of B(x,  0) are trapped, and by go 
the exterior domain in which field lines go to z = _+ co if followed far enough. 
Obviously, B(x, O)*n  = 0 on ago, the boundary of 9,. 

There are also unpleasant possibilities like that indicated in figure 1 (d),  in which 
some flux tubes are knotted as they pass through the disturbance region. 

In all these cases the Lorentz force (V A b,) A B(x,  0) is in general rotational, and 
so motion of the fluid must ensue. Let u(x, t ) ,  B(x,  t )  = B,+b(x,  t ) ,  denote the 
velocity and magnetic fields for t 2 0, with initial conditions 

u(x,  0) = 0, b(x,  0) = b,(x).  (2.3) 
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Assuming unit fluid density, these fields evolve according to the equations 

ab 
- = V A ( u  A B) ,  
at 

(2.4) 

a u  -+ U . V U  = - Vp + (V A b )  A B+ vV2u, 
at (2.5) 

and V - v  = 0, V - b  = 0. The Lorentz force, which may be written as the divergence 
of the Maxwell stress tensor, integrates to  zero over the whole fluid, and so the total 
momentum generated is zero. Thus we may safely assume that there is no Stokeslet 
(O( r - l ) )  term in the velocity field, and that 

101 = 0 ( r p 2 ) ,  Jp-p,J = O ( Y - ~ )  a t  most as r + m .  (2.6) 

It is then clear from (2.4) that  

Ib( = O(Y-~ )  as  GO (2.7) 

for all (finite) t > 0. The dominant terms of (2 .5)  are then all O(Y-~), and the 
assumptions (2.6), (2.7) are self-consistent for all t > 0. 

We can now easily construct an energy equation. Multiplying (2.4) scalarly by b, 
(2.5)  by u,  adding and integrating over a large sphere VR of radius R, we find 

A] $ ( b z + v z ) d V = ]  FE*ndS-vJ (VAu)2dV, (2.8) 
dt V R  8R V R  

where 

From (2.6) and (2.7),  IFEI = O(rP5)  as r~ GO, and so the surface contribution in (2.8) 
vanishes in the limit R+ GO. Hence, defining 

FE = - b A ( u  A B) - ~ ( p  - p a )  + vu A (V A U )  -?p2. (2.9) 

M(t )  = f b2 d V ,  1 (2.10) 

K(l )  = ; 0 2  i,v, (2.11) s 
and @ ( t )  = 1’ (V A u ) ~  dt’, s 
the integrals now being throughout all space, we have 

d 
dt 
- [M( t )  1- K(t ) ]  = - @(t) .  

(2.12) 

(2.13) 

This is just as in M85, except that  now M(t) is the magnetic energy of the disturbance 
field, rather than the total field. Equation (2.13) of course implies that  M(t)+K(t) 
decreases monotonically for so long as @ ( t )  =I= 0. 

Consider first the situations of figures 1 (a ,  b )  in which the topology of the initial 
field is essentially the same as that of a uniform field. The initial disturbance then 
simply splits into two Alfven v lves which propagate in the directions +_ B, and are 
damped by viscosity. If B, L/v 9 1, where L is the scale of the initial disturbance, 
then we may distinguish three stages in this process (see figures 2a,  b,  c ) .  

(a) t 5 L/B,. During this initial stage, the two AlfvBn waves are still overlapping, 
and nonlinear interaction between them may influence their structure. 

( b )  LIB, 4 t 4 L2 v - l .  During this intermediate stage, the Alfven waves are 
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FIGURE 2 .  Three stagps of Alfvin wave propagation: ( a )  initial stage of overlapping waves; ( b )  
intermediate stage when solution is given hy (2.14): ( c )  final stage when waves decay due to 
viscosity. 

non-overlapping, and viscosity is still negligible ; the exact solution of the nonlinear 
equations (3.4), (3.5) then takes the form 

1 U ( X .  t )  = f ( f ( x - B , t ) + g ( x + B , t ) ) ,  

b(X, t )  = f { - f ( x - B , t ) + g ( x + B , t ) } ,  
(2.14) 

where the functions f and g are determined in principle by the initial perturbation 
b,(x);  in the limit (b,(x)l/B, 4 1, this relationship is trivial: 

A X )  = g ( x )  = b,(X), (2.15) 

but nonlinear interactions during stage (a )  will cause departures from this result of 
linearized analysis. 

L2/v.  During this final stage, viscosity causes diffusive spreading of the 
separate Alfvh waves. If this process is treated using linearized equations, i t  is found 
that the disturbance spreads relative to the ‘centres of disturbance’ x = +B,t like 
(v t ) i ,  and b and u decay like ( ~ t ) - ~  (Saffman 1961). The total energy of the disturbances 
decays like (v t ) -g ,  and the rate of dissipation is proportional to ( i 4 - Z .  

Consider now the situation of figure 1 (c) in which there is a finite domain 9, of 
volume TI, in which the field lines of B,, + b,(x) are trapped. I n  the external region 
go, Alfv6n waves may propagate to  kco along the B,-lines, but since the field 
topology is conserved, a domain 9 ( t )  of trapped field lines, of constant volume V,, 
must survive for all t > 0. The shape of 9 ( t )  will gradually adjust itself, and as i t  
does so Alfvkn waves will continue to  be generated and to propagate away in the 
external region g(t). The total disturbance energy will decrease according to (2.13) 
until i t  attains a minimum compatible with the initial conditions. 

In general, i t  is linkage of B-lines in 9 ( t )  that guarantees that this minimum is 
non-zero. For if the topology of B in 9 ( t )  is trivial in the sense that each B-line is 
an unknotted closed curve which may be shrunk to a point in 9(t) without cutting 

( c )  t 
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FIauRE 3. Field configuration for large t if the topology in g(t) is trivial. 

any other B-lines, then 9 ( t )  could relax to  a long cigar-shaped region (figure 3) ,  the 
field perturbation tending to zero as the length of the ‘cigar’ increases without limit. 
A measure of the linkage in 9 ( t )  is provided by the invariant magnetic helicity 

(2.16) 

where B = curl A ,  the gauge of A being arbitrary. This suggests that  we should seek 
a lower bound for M(t )  in terms of X ,  as in M85 (and Arnol’d 1974), the difference 
now being that the volume and topology of 9 ( t )  are prescribed, but its shape is 
determined only as part of this process of energy minimization. 

It will be sufficient here to give an order-of-magnitude argument for determining 
the minimum magnetic energy ME. Suppose that the field linkage in 9(t) is the 
simplest possible, namely that we have two linked flux tubes each of volume iVo and 
each carrying flux @. The helicity associated with this linkage (Moffatt 1969) is given 

by 2? = f 2 @ 2 ,  (2.17) 

the sign depending on whether the linkage is right-handed or left-handed. If these 
flux tubes are tori (figure 4u) with sectional areas A, ,  A ,  and inner radii a,  - Vo/Al, 
u2 - Vo/A, (where constants of order unity are neglected) then the magnetic energy 
in 9 ( t )  is 

(2.18) 

This is minimized when uf - A,  and ui - A,, since then the flux tubes are 
‘maximally contracted’ as in figure 4(u); hence 9, - A ,  - Voi and so, from (2.18), 

Mkin - PV, ;  - I Af I V L ~ .  (2.19) 
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(4 (b) 

FIGURE 4. Linked flux tubes imbedded in a uniform field; the perturbation magnetic energy has 
a minimum determined by the magnetic helicity in the region 9 of trapped field lines. 

However, there is also a contribution, M+ say, to  M from the external region $. 
For any given shape of 9, the perturbation field bE(x) of minimum energy in 
satisfying 

(2 .20 )  
bE.n = -B;n on a9, 

bE+O asIxI-tco 

is the unique potential field bE = VcpE, with 

I V%pE = o in G2, 
(2 .21)  

If the dimensions of 9 parallel and perpendicular to  B, are both O( V$) ,  then clearly 
lbEl = O(B,) and so M+ - Bt V,. If however, I H I is weak, then 9 may become cigar 
shaped with dimensions of order e-2Voi and eV,$ (e  4 1)  parallel and perpendicular 
to B, respectively (figure 4 b ) .  I n  this case, lbEl - eB,, in $ so that 

M+ - e2BiVo. (2 .22 )  

(2 .23 )  

Moreover we then have A ,  - e2VO:, A ,  - c - ~ V $  so that 

M- - V;$I 2 I €-4.  

Hence M = M+ + M- is minimized when 

€6 - I J f  l/B; V0+ (2 .24 )  

and then Mmin - 1 %  1”; Vok (2 .25 )  

This is fact gives the correct order of magnitude of Mmin whether e = O(1) or c < 1 .  
Thus, if 1 %  I + 0, there is a lower bound (> 0) for the magnetic energy and so, 

a fortiori, for M ( t )  + K ( t ) .  Since M ( t )  + K ( t )  is monotonic decreasing and bounded 
below in this way, this total energy must tend to  a constant as t --f co, and so from 
(2 .13 ) ,  @ ( t ) + O  as t+co;  hence also, K(t)+O, M ( t ) + M E ( > O )  as t - zco .  As noted 
already, the rate of dissipation associated with the emitted AlfvBn waves decays like 
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t-?; but now we see that the total rate of dissipation including that in the 
neighbourhood of 9 ( t )  must tend to zero also as t-. 00. 

As in M85, it now follows that, since viscosity will surely prevent the appearance 
of singularities in u ,  we must have u - 0  as t --z 00, and B+ BE(x) = B, + bE(x) where, 

(2.26) 
from (2.5). 

i.e. BE is a magnetostatic field, which by its construction is topologically accessible 
from the initial field B(x,  0 ) ,  and which has a domain gE (of volume V,) of trapped 
field lines. 

We have already noted that the field of minimum energy is a potential field in the 
external region gE. This may be seen directly from (2.26): for 

jE A BE = VpE, jE = curl BE, 

BE.VpE = 0, (2.37) 

so that pE is constant on BE-lines and therefore constant throughout gE, being 
uniform a t  infinity. Hence 

jE = a ( x )  BE in gE (2.28) 

with BE.Va = 0. (2.29) 

Hence 01 is also constant on BE-lines and therefore zero throughout dE, being zero 
a t  infinity. Hence jE = 0 in dE as expected. 

3. The analogous Euler flows 
The analogy between the problems (1.1) and (1.2) now allows us to deduce the 

following result. Let u,(x) be an arbitrary localized perturbation superposed on a 
uniform stream U,, such that there is a domain 9, of finite volume V, in which the 
streamlines of U, + u,(x) are trapped and such that the streamlines are unknotted 
in do. Then there exists an Euler flow U ( x )  = Uo+uE(x) with the following 
properties: (i) there exists a domain g E  with volume 16 and the same topology as 
9, such that the streamlines of U ( x )  are trapped in g E  ; (ii) the streamlines of U(x) 
in 2BE are topologically accessible from the streamlines of U,+u, (x)  in 9,; (iii) the 
flow U(x) is irrotat>ional in the ext>ernal domain GE, i.e. the vorticity 

wE = curl U = curl uE (3.1) 

is confined t'o aE.  
I n  a frame of reference moving with velocity U,, i.e. with the fluid a t  infinity, the 

blob of vort'icity uE propagates without change of structure with velocity - U,. It 
would appear that there is a very wide class of solutions of the Euler equations of 
t'his kind. Clearly we are dealing with a generalization of the vortex ring, for which 
the term ' vort'on ' may be appr0priate.i We emphasize that in general these solutions 
will have vortex sheets imbedded wit,hin the region gB, and in this case are likely 
to be unstable. We now turn however to situations in which symmetry conditions 
exclude the appearance of tangential discontinuities in the magnetic-relaxation 
problem and so equally of vortex sheets in the analogous Euler flows. 

t The term 'vorton' has been used in a more specific context by Novikov (19%); there is however 
litt'le possibility of confusion in using it also in t,he present more general context. 
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FIGURE 5 .  Topology of initial field B(x,  0) for axisymmetric relaxation. 

4. Axisymmetric configurations 
Suppose that the initial magnetic field B(x,  0) = B,+b,(x) in the magnetic 

relaxation problem is axisymmetric about the axis 0 2 ,  and has the topology 
indicated in figure 5, i.e. there are only two hyperbolic neutral points ('saddles'), 
both on the axis of symmetry ( A  and B) ,  and one elliptic neutral point N (a 'centre ') 
in the meridian plane. In  cylindrical polar coordinates (8, cp, z )  this field may be 
expressed in terms of a flux function xo(s ,  z )  analogous to Stokes' stream function: 

B ( x . 0 )  = --,o, . r s 8.2 as 
The lines of force are given by xo(s,  z )  = const., and in particular the surface 39, may 
be taken to be xo(s,  z )  = 0. Obviously 

xo - --'B , 82 asJx /+co .  (4.2) 

Hence (taking B, > 0), < o in Go, 
2 0 in 9,. (4.3) 

xo is maximal at N ,  and has no other extrema in s > 0, - cc < z < co. 
Suppose now that we allow this field to relax, the fluid being viscous and 

perfectly conducting as in $ 2 .  Obviously the motion is axisymmetric (provided 
non-axisymmetric instabilities are ignored), and the field a t  time t is given by 

B(x , t )=  - - ,o ,  --- , <s. 2 ""1 as 
where ~ ( s ,  z ,  t )  satisfies 

9 = 0, x ( s ,  z ,  0) = xo(s .  z ) ,  
Dt 

(4.4) 

i.e. the flux surfaces x = const. move with the fluid. In  particular, the volume I'(x) 
contained inside each toroidal flux surface x = const. (x > 0) remains constant, by 
virtue of the incompressibility of the fluid. Thus the function b'(,y) (0 < x < xN) is 
a characteristic property of the field which is invariant throughout the relaxation 
process; and V ( x )  is a topological invariant,, in the sense that a necessary condition 
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(4 (b) 

FIQURE 6. (a )  Tori, initially separate, cannot come in contact as illustrated, since this would involve 
unbounded increase of magnetic energy; (6) by contrast, in three-dimensional configurations, 
surfaces of discontinuity can form a t  a squeeze film in which fluid is ejected transverse to the 
magnetic field. 

for two fields characterized by flux maxima x N 1 ,  x N 2  and functions V l ( x ) ,  V2(x)  to 
be topologically accessible,? one from the other, is that  

Suppose now that x N  > x1 > x 2  > 0, so that the surface x = x1 is a torus nested 
inside the torus x = x 2 .  These two tori can never come in contact in an axisymmetric 
motion since, if they were to do so as indicated in figure 6 ( a ) ,  this would involve 
infinite stretching of B-lines in the squeeze film in the final stage of approach, and 
this would require unbounded increase of magnetic energy which is not possible 
according to (2.13). Since this argument applies to any two values of x l ,  x 2  in the 
range (0, x N )  i t  follows that flux surfaces that are initially separate can never come 
together; hence there is no mechanism by which a tangential discontinuity of B may 
form. This is to be contrasted with the fully three-dimensional situation of $ 2 ,  in 
which two magnetic surfaces may approach each other over a finite area, the fluid 
being squeezed out in a direction transverse to the field in a manner which does not 
involve field-line stretching (figure 6 b ) .  The axisymmetric constraint prevents this 
type of behaviour. (There appears no reason however why weaker discontinuities of 
the gradient of B should not form.) 

We are thus driven to  the following remarkable conclusion, which we now state 
in the context of the analogous Euler-flow situation (see figure 7 )  : with cylindrical 
polar coordinates ( s , ~ ,  x ) ,  let $o(s, z )  be an arbitrary C1 function with the following 
properties : 

(i) $,(s, z )  - -;tUos2 (U ,  > 0) as s2+z2+oo;  
(ii) $,(s, z )  2 0 in a compact axisymmetric connected domain Bo, and @.,(a, z )  ,< 0 

(iii) $o has a single maximum $ N (  > 0) a t  a point N E  go,  each point of the circle 
in the exterior domain go; 

s = sN, 2 = zN then being an elliptic stagnation point of the corresponding flow. 

7 Here, we continue to use the term ‘topologically accessible’ in the sense defined in M85. 
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(4 (b) 

FIGURE 7 .  Relation between (a) the ‘arbitrary’ flow +.o(s, z )  with signature ?’(+) and (b )  the 
inferred Euler flow with the same signature. 

For 0 < Y < $ N ,  let V(  Y) be the volume inside the torus 

$&, 4 = y, 
so that evidently V(  Y )  is monotonic decreasing with 

V ( @ N )  = O ,  

V(0)  = V, (the volume of 9,). 

Then there exists an Euler flow represented by a CI Stokes stream function $(s, z )  
with similar properties, namely 

(i) $(s, z )  - -tUo s2 
(ii) $(s, z )  3 0 in a compact axisymmetric connected domain 9 having the same 

(iii) $ has a single maximum $N within 9;  
(iv) the volume-flux relation V = V(  Y) is the same for the Euler flow $(s, z )  as 

for the ‘arbitrary’ flow $o(s, z ) .  
The importance of the function V(  Y) in characterizing axisymmetric flows of this 

kind merits recognition through appropriate terminology: we shall describe V(  Y) as 
the ‘signature’ of the flow. Since obviously there is an uncountable infinity of 
possible signatures and since two flows are topologically accessible one from another 
only if they have the same signature, it  follows that there is an uncountable infinity 
of topologically distinct Euler flows of vortex-ring character, which propagate with 
a given velocity U,. For each such flow, the velocity field is continuous,t but the 
vorticity field may have one or more surfaces of discontinuity or even (conceivably) 
surfaces of discontinuity that are densely distributed in certain subdomains of 9. 
Surfaces of discontinuity of vorticity need cause no surprise in this context, since 
even the well-known spherical vortex of Hill (1894) exhibits this feature. 

We have noted in the above discussion that, in the magnetic-relaxation problem, 
the initial field B, is assumed to have only two hyperbolic neutral points A and B 
on the axis of symmetry; if however B, has one or more hyperbolic neutral points 
off the axis of symmetry (as for example in the topology of figure 8 a )  then a 
tangential discontinuity of B may develop during relaxation without violating the 

t Here, we need suppose merely that V(  Ul) and its inverse Y( V )  are continuous. 

as s2+ z 2 +  a ; 

volume V, as go,  and $(s, z )  < 0 in the exterior domain $; 
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FIGURE 8. (a )  Possible topology with hyperbolic neutral point off axis of symmetry; (6) possible 
formation of tangential discontinuity near hyperbolic neutral point during the process of relaxation; 
the fluid is squeezed out of the acute angle a t  the neutral point under the action of the local Lorentz 
force, and there is no topological impediment to the formation of a current-sheet discontinuity 
as t - t  a, as illustrated. 

constraint of bounded magnetic energy, as illustrated by the sketch of figure 8 ( b ) .  
The streamlines associated with a circular line vortex of radius a and very small core 
radius ( 5  0.01~)  have this topology (see, for example, Batchelor 1967, p. 525). 

5.  Discussion 
In this paper we have extended the technique suggested by Arnol’d (1974) and 

developed by Moffatt (1985), whereby magnetic relaxation in a perfectly conducting 
but viscous fluid is used to demonstrate the existence of magnetostatic equilibria, 
and hence of analogous Euler flows, of arbitrarily prescribed topology. I n  the present 
paper we have focused on situations in which the ‘initial field’ B(x,  0) of the 
magnetic-relaxation problem settles down to a uniform field Bo at infinity. The 
relaxed equilibrium field Bo+bE(x)  then has the property that the disturbance b E ( x )  
is rotational only in a finite region gE within which the field lines of Bo+bE are 
trapped. The analogous Euler flow U0+uE then has a similar property, and the 
vorticity field w E  = curluE then propagates without change of shape with velocity 
- U, relative to the fluid ‘at  infinity’. This ‘vorton’ is a generalization of the familiar 
vortex ring; in general the velocity field in such a vorton may have tangential 
discontinuities. 

When attention is limited to axisymmetric flows described by a Stokes stream 
function @(s, z )  we have shown that, for every ‘signature’ V ( @ )  (0 < @ < ?,kN) 
representing the volume inside the torus @ = const. there exists a vortex ring 
propagating with a given velocity - U,, and that flows of different signatures are 
topologically distinct in a sense that is best appreciated with reference to the 
analogous magnetostatic equilibria : no continuous deformation can convert one to 
the other. 

An important property of the axisymmetric flow is that, if the reference flow Uo(x) 
(with stream function @,(s, z ) )  is continuous, then the derived Euler flow U E ( x )  is 
also continuous; these are in fact related by the Cauchy equation 

axg 
UF(-q  = L70j(x)-, aXj 
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where x + X ( x )  is the net particle displacement associated with the velocity field 
u(x, t )  (0 < t < 00) in the corresponding magnetic relaxation problem. Since toroidal 
surfaces cannot come together in this relaxation process, under the constraint of 
axisymmetry, the mapping x + X ( x )  is continuous, and it is in fact a homeomorphism. 
The flow UE(x) is thus topologically equivalent in a strict sense to the flow Uo(x) .  

It is of course well known that in any steady axisymmetric flow, the azimuthal 
vorticity 

must satisfy 
(5 .2)  

for some function F($) ,  i.e. w / s  is constant on streamlines. For any given function 
F ( $ )  it  is generally a very digcult matter to find a corresponding $(s ,  z )  or indeed 
to show that any such solution exists (see, for example, Friedman & Turkington 
1981). By contrast, the technique suggested in this paper indicates that  for arbitrary 
signature V ( $ )  (0 < $ < $ N ) ,  a vortex-ring-type solution exists, and the correspon- 
ding vorticity distribution SF($)  is then implicitly determined. Unfortunately i t  is 
difficult to obtain an explirit relationship between the functions V($)  and F($) ;  and 
consideration of even the simplest case of Hill’s vortex (for which F($)  K $) 
indicates that the relation between F and V may in general be quite complex. 
Numerical determination of flows characterized by signature V($)  and of the 
corresponding vorticity field sF( $) should nevertheless be straightforward. 

The question perhaps remains as to how an initial flow $.,(s, z )  with a given 
signature V ( $ )  is to be constructed. A possible procedure is as follows: let $H(s, x )  
represent Hill’s vortex, with $H = 0 on s 2 + z 2  = a2,  where $a3 = V ( O ) ,  and denote 
the signature of this vortex by VH($), ($ > O ) ,  an easily computed function. Let 

(5.3) $O($? z )  = ‘i($H(S, 2)). 

where G is a function to be determined, satisfying G ( I , ~ ~ )  = $H for kH < 0. The 
streamlines of the flow v+kr0 then coincide with the streamlines of the flow $H and so 
the signatures are related by 

Hence the required signature V ( $ )  may be achieved by choosing 

vH($r) = v(G($)). 15.4) 

G($) = v-’{ vH($r)). (5 .5)  
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